AutoCorrel II: a neural network event correlation approach

نویسندگان

  • Maxwell G. Dondo
  • Peter Mason
  • Nathalie Japkowicz
  • Reuben Smith
چکیده

Intrusion detection analysts are often swamped by multitudes of alerts originating from installed intrusion detection systems (IDS) as well as logs from routers and firewalls on the networks. Properly managing these alerts and correlating them to previously seen threats is critical in the ability to effectively protect a network from attacks. Manually correlating events can be a slow tedious task prone to human error. We present a two-stage alert correlation approach involving an artificial neural network (ANN) autoassociator and a single parameter decision threshold-setting unit. By clustering closely matched alerts together, this approach would be beneficial to the analyst. In this approach, alert attributes are extracted from each alert content and used to train an autoassociator. Based on the reconstruction error determined by the autoassociator, closely matched alerts are grouped together. Whenever a new alert is received, it is automatically categorised into one of the alert clusters which identify the type of attack and its severity level as previously known by the analyst. If the attack is entirely new and there is no match to the existing clusters, this would be appropriately reflected to the analyst. There are several advantages to using an ANN based approach. First, ANNs acquire knowledge straight from the data without the need for a human expert to build sets of domain rules and facts. Second, once trained, ANNs can be very fast, accurate and have high precision for near realtime applications. Finally, while learning, ANNs perform a type of dimensionality reduction allowing a user to input large amounts of information without fearing an efficiency bottleneck. Thus, rather than storing the data in TCP Quad format (which stores only seven event attributes) and performing a multi-stage query on reduced information, the user can input all the relevant information available and instead allow the neural network to organise and reduce this knowledge in an adaptive and goal-oriented fashion. DRDC Ottawa TM 2005-193 i

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval-based Solar PV Power Forecasting Using MLP-NSGAII in Niroo Research Institute of Iran

This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...

متن کامل

Empirical Correlations and an Artificial Neural Network Approach to Estimate Saturated Vapor Pressure of Refrigerants

The examination of available vapor pressure data in the case of the methane, ethane, propane and butane halogenated refrigerants, allowed recommendations of standard equations for this property. In this study, three new models include a general correlation; a substance-dependent correlation and an artificial neural network (ANN) approach have been developed to estimate the saturated vapor press...

متن کامل

PREDICTION OF LOAD DEFLECTION BEHAVIOUR OF TWO WAY RC SLAB USING NEURAL NETWORK APPROACH

Reinforced concrete (RC) slabs exhibit complexities in their structural behavior under load due to the composite nature of the material and the multitude and variety of factors that affect such behavior. Current methods for determining the load-deflection behavior of reinforced concrete slabs are limited in scope and are mostly dependable on the results of experimental tests. In this study, an ...

متن کامل

GDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers

Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...

متن کامل

بررسی همبستگی میان پارامترهای اقلیمی و سیلاب حوزه رودخانه مارون و پیش‌بینی سیلاب به کمک شبکه هوشمند عصبی

Flood is a kind of natural disaster which causes financial damages and fatality for people. Every year, especially in areas like Maroon river basin which have changes in precipitation and temperatures, along with frequent and severe floods. This study aimed to identify the climatic parameters on flood area can be efficiently artificial neural network, better methods applied in anticipation of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006